Towards proposing network topology upgrade in Salem University Lokoja

Datukun Kalamba Aristarkus ${ }^{1}$ Sellappan Palaniappan ${ }^{2}$, Tatchanaamoorti Purnshatman ${ }^{3}$
${ }^{1}$ Plateau State University Bokkos, Nigeria
${ }^{2,3}$ Malaysian University of Science and Technology, Malaysi

Abstract

This paper is about the computer network of Salem University Lokoja, which is located in Kogi State, Nigeria, in the western part of Africa. The existing computer network topology of Salem University Lokoja (SUL) is being investigated via interview and observation methods of survey. With the help of the Technical Staff of the University, information about the topology are being collected and confirmed via observation. The confirmed topology or layout is being design and simulated for behavioural outputs. Then, the outputs of the simulation of the topology will be analyzed, towards proposing a better topology for improving performance of the University's network. CISCO Packets Tracer simulator will be used for all the designs and simulation. In the end a suitable topology requirement will be proposed for improving network performance in Salem University Lokoja.

Keywords: Campus Area Network, Network Simulation, Topology Upgrade.

1. INTRODUCTION

The technology, which we adopt in making network interconnections, influences the performance of any computer network. Network topologies (Banerjee, S. et al, 1999; Cem Erosy and Shivendra PanWar, 1992; C. M. Harris, 2008; D. Bertsekas and R. Gallager, 1992) are the technology for arrangement of various computer elements like links, nodes etc. clearly, network topology is the topological structure (Geon Yoon and Dae Hyun Kwan, 2006) of a computer network. Topology is mathematically expressed in terms of the connectedness of objects which is the most basic properties of space. Network topology simply refers to the way in which the network of computers (Nicholas F. Maxemchuk and Ram Krishnan, 1993; Bannister, J.A. et al, 1990) is connected.

A good example of network topology is a Local Area Network (LAN) (F. Backes, 1988; Li Chiou Chen, 2004). A situation Where a node has two or more physical links to other devices in the network, a star topology is described. Which is the most commonly adopted topology in most campuses. Physical Network Topology emphasizes the hardware associated with the system including workstations, remote terminals, servers, and the associated wiring between assets. Conversely, Logical Network Topology emphasizes the representation of data flow between nodes. Topologies can be represented in a graph model. In this paper, we present the physical topology of the network under study.

2. LITERATURE REVIEW

A Campus Area Networks (CAN) can be seen as the Local Area Networks (LAN) of a campus. However, CAN could interconnect LANs with geographically dispersed users to create connectivity (Zubbair S. et al, 2012). Network Topology shows the way in which a set nodes are connected to each other by links (Qatawneh Mohammed et al, 2015), which basically is synonymous to CAN. The technology for arrangement of various computer elements like links, nodes etc describes the concept of network topologies. T1 (William, 1998), T3 (Regis, 1992), ATM (Koichi et al., 1997), ISDN (Jonathan, 2004), ADSL (Michel, 2003), frame relay (Jim, 1997), radio links (Trevor, 1999), amongst others, constitutes few of these technologies.

An optimal performance of a network that meets users' need is key in every campus, which always needs attention. Selection of equipments to be deployed after considering the requirements of the users is necessary (Sood, 2007). TCP

International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online) Vol. 4, Issue 3, pp: (278-283), Month: July - September 2016, Available at: www.researchpublish.com
window size on application performance as against the choice of an increased bandwidth can help boost network (Panko, 2008b). The use of redundant links may also increase performance, implement load balancing and utilise links from say 92% to 55% and response time reduced by 59% (Panko, 2008; Seung-Jae, 2008). Based on risk and performance point of view, it is desirable to break a larger campus networks into smaller modules and connect them with a core layer (Robert, 1998). Distribution modules are interconnected using layer 2 or 3 core (Tony, 2002). In effect, the layer 3 switches at the server side becomes a collapsed backbone for any client to client traffic (Graham, 2010).

Gigabit Ethernet channel can be used to scale bandwidth between backbone switches without introducing loop (Rich and James, 2008). Truncking capacity is necessarily provided into the backbone of any network design (Jerry and Alan, 2009). Hierarchical design is common in practice, when designing campus or enterprise networks (Saha and Mukherjee, 1999; Sami et al, 2002). There is no need to redesign a whole network each time a module is added or removed, provided a proper layout has being in place. Distinct building blocks can be put in-service and taken out of-service with little impact on the rest of the network. This capability facilitates troubleshooting, problem isolation and network management (Damianos et al., 2002). In a hierarchical design (Saha et al., 1993), the capacity, features, and functionality of a specific device are optimized for its position in the network and the role that it plays. The number of flows and their associated bandwidth requirements increase as they traverse points of aggregation and move up the hierarchy from access to distribution and to core layer (Awerbuch et al., 2000).

Network analysis, problems related to network mapping, characterization, sampling, inference and process can be adopted (Eric D. Kolazyk, 2009). This has to do with identifying the network components; nodes and routing system, which has to do with the analysis of the path. It could also be mathematical analysis of the network that yields explicit performance expressions (Leonard Kleinrock, 2002). This study is concerned with characterizing, designing and simulating the existing topology for proposing a better topology requirement for improving the performance of the network in Salem University Lokoja.

3. METHODS

The methods used for survey are interview and observation. After the survey, data collected on the networks will be used to design and simulate the topologies, towards proposing a topology upgrade requirement for improving the performance of the network of Salem University Lokoja. The sample of interview questions is below:

Computer Network Technical Questions:

This interview seeks to collect technical Information on the Computer Networks in the various campuses. These shall be Information on LAN Topology, Network Devices Internet Subscription Information, for the selected University Campus in Nigeria, being administered by Mr. Datukun Kalamba Aristarkus in 2016 to respective technical staff. Your participation in this study is voluntary and will form part of this study and will not identify you as an individual.

Part A- Basic Questions; tick as may apply

Part B-Survey Interview Questions; tick all that applies

6. Kindly provide the following Information if available on your campus Network: A Network Model or layout, History of Internet Subscription to date.

From the questions sample above, only part B, question numbers 1,5 and 6 are useful to this study, which is concerned with the network topology. This will further help in design and simulation of the topology for behavioural outputs.

International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)
Vol. 4, Issue 3, pp: (278-283), Month: July - September 2016, Available at: www.researchpublish.com

4. RESULTS

Table 1: Number of Nodes in SUL network

Number of Nodes	SUL	
	nen	
	Inter-building nodes	11
Intra-building Nodes	39	
Total	50	

Table 2: Number of Links in SUL network

Number of Nodes	SUL	
	Inter-building links	
Intra-building links	10	
Total	39	

Table 3: Weights of Intra-building links in SUL

Direct links	Weight (Meters)	
A-A	0	
A-B	1	
A-C	0	
A-D	0	
A-E	0	
B-C	5	
B-D	50	
B-E	80	
C-D	0	
C-E	0	
D-E	0	

Figure 1: Graph model for SUL network

International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)
Vol. 4, Issue 3, pp: (278-283), Month: July - September 2016, Available at: www.researchpublish.com

Figure 2: SUL Physical Topology

PDU List Window								
Fire	Last Status	Source	Destination	Type	Color	Time(sec)	Periodic	Num
	Failed	Laptop6	Laptop5	ICMP		0.000	N	0
	Failed	Laptop6	PC4	ICMP		0.000	N	1
	Successful	Laptop6	PC4	ICMP		0.000	N	2
	Failed	Laptop6	PC5	ICMP		0.000	N	3
	Successful	Laptop6	PC4	ICMP		0.000	N	4
	Failed	Laptop6	Router1	ICMP		0.000	N	5
	Failed	Laptop6	PC8	ICMP		0.000	N	6
	Failed	Laptop6	Laptop7	ICMP		0.000	N	7
	Failed	Laptop6	Laptop9	ICMP		0.000	N	8
	Failed	Laptop6	Laptopo	ICMP		0.000	N	9
	Failed	Laptop6	PCO	ICMP		0.000	N	10
	Successful	PC6	Laptopo	ICMP		0.000	N	11
	Successful	Laptop6	Laptopo	ICMP		0.000	N	12
	Successful	Laptop6	Laptop7	ICMP		0.000	N	13
	Failed	PC6	PC9	ICMP		0.000	N	14
	Successful	PC6	PC9	ICMP		0.000	N	15

Figure 3: SUL Simulation based on PDU packeting

Figure 4: SUL Simulation panel showing delay time at 0seconds

International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online) Vol. 4, Issue 3, pp: (278-283), Month: July - September 2016, Available at: www.researchpublish.com

Figure 5: SUL Simulation panel showing increasing delay time

5. DISCUSSIONS

We will notice that the number of nodes and type of topology are given in table 1, whereas, number of links given in table 2.This is referred to the fact that a star topology with N nodes has $\mathrm{N}-1$ links. Based on the given fact in tables 1 and 2, the topologies were designed and simulated.

In our design, we were concerned with the only provision (intra-building requirements) for SUL. Here, we first consider the graph model, which was generated via an online graph generating platform, before subsequent physical design.
Table 1-3 corresponds to figure 1 and figure 1 corresponds to figure 2 accordingly. In simple terms, the graph model was used to design the physical topology but the information from tables 1-3 was used to generate the graph model itself.
We will further see that figure 3 described the PDU packets sent from one computer to the other, showing the deliverability of the packets as they are being sent from one computer to the other. Figure 4 and 5 depicts the delay time in packets delivery, which clearly showed that the time it takes to deliver a packed increases with increase in loads on the network.

6. CONCLUSION

In conclusion, Salem University Lokoja would first of all need to upgrade their links from copper (UTP) to optical (fiber optics) for inter-buildings connections in the University. This is to minimise the delay rate. Next, the topology may be better of, with hybrid topology (say mesh, star and bus). Using mesh for inter-building, bus for inter-floor and star for users, access. This would improve the network performance by reducing the impact of loading and further reducing delivery delay of packets.

ACKNOWLEDGMENT

I thank all the Technical staff in Salem University Lokoja for being patient so far, providing me with relevant information for this research. I also thank my co-authors for all their contributions in gathering and analyzing the data of this work.

REFERENCES

[1] Banerjee, S., Jain, V., Shah, S. (1999). Regular multihop logical topologies for lightwave networks. Communications Surveys \& Tutorials, IEEE. 2 - 18. 2(1). First Quarter
[2] Cem Ersoy and Shivendra PanWar (1992). Topological Design of Interconnected LAN-MAN Networks. IEEE INFOCO. 2260-2269.
[3] Backes F. (1988). Transparent Bridges for Interconnection of IEEE 802 LANs. IEEE Network. 5-9.

International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online) Vol. 4, Issue 3, pp: (278-283), Month: July - September 2016, Available at: www.researchpublish.com
[4] Li Chiou Chen (2004). The Impact of Countermeasure Propagation on the Prevalence of Computer Viruses. IEEE Transactions on Systems, MAN, and Cybernetics PartB; Cybernetics. 823-833. 34 (2).
[5] Geon Yoon, Dae Hyun Kwan, Soon Chang Kwon, Yong Oon Park and Young Joon Lee (2006). Ring Topologybased Redundency Ethernet for Industrial Network. SICE-ICASE International Joint Conference. 1404 - 1407. 1821.
[6] Nicholas F. Maxemchuk, Ram Krishnan (1993). A Comparison of Linear and Mesh Technologies---DQDB and Manhattan Street Network. IEEE Journal on Selected Areas in Communications. 11 (8).
[7] Bannister, J.A., Fratta, L. and Gerla, M. (1990) Topological design of the wavelength-division optical network, INFOCOM, Ninth Annual Joint Conference of the IEEE Computer and Communication Societies. The Multiple Facets of Integration. Proceedings, IEEE. 1005 - 1013. 3.
[8] Harris C. M. (2008). Fundamentals of Queueing Theory, Wiley Series in Probability and Statistics. John Wiley \& Sons, Hoboken, NJ, USA, 4th edition.
[9] Bertsekas D. and Gallager R. (1992). Data Networks, 2nd ed. Englewood Cliffs,.NJ: Prentice-Hall.
[10] Qatawneh Mohammad, Ahmad Alamoush, Sawsan Basem, Maen M. Al Assaf and Mohammad Sh. Daoud (2015). Embedding bus and ring into hex -cell interconnection network. International Journal of Computer Networks \& Communications (IJCNC). 7(3).
[11] Awerbuch B, Du Y and Shavitt Y (2000). The effect of network hierarchy structure on performance of ATM PNNI hierarchical routing Comput. Commun., 23(10): 980-986
[12] Damianos G, Dominic G, Mohammed G, Mike O (2002). Hierarchical network management: a scalable and dynamic mobile agent-based approach Comput. Networks., 693-711. 38(6).
[13] Graham C (2010). Algorithms for Next Generation Networks (Computer Communications and Networks) Springer; 1st Edition. Edition p. 462.
[14] Jerry F, Alan D (2009) Business Data Communications and Networking.
[15] Jonathan C (2004). Cisco Frame Relay Solutions Guide. Cisco Press; 2nd edition. 696.
[16] Koichi A, Tadanobu O, Masatoshi K, Yoichi M, Katsuyuki Y, Hiroyuki I, Shin-Ichi K and Takumi O (1997). Introduction to ATM Networks and B- ISDN. John Wiley \& Sons; 1st edition.
[17] Michel B (2003). ADSL - Edition 2003 CampusPress. 360.
[18] Panko R (2008b). Predicting the Impact of TCP Window Size on Application Performance. OPNET University Program. 8.
[19] Panko R Inc (2008). Evaluating Application Performance across a WAN. OPNET University Program. Regis J. 16.
[20] Robert C (1998). Wide Area Network Design: Concepts and Tools for Optimization (The Morgan Kaufmann Series in Networking) Morgan Kaufmann 1st edition. 441.
[21] Saha D, Mukherjee A (1995). Design of hierarchical communication networks under node/link failure constraints Computer Communications, 378-383. 18(5).
[22] Saha, D, Mukherjee, A, Dutta SK (1993). Hierarchical design of large computer communication networks, Technical Re- port JU/CSE/AM/93/DS-2, Department of CSE, Jadavpur University, India
[23] Sami JH, Alice CP, Daniel CL (2002). Automated design of hierarchical intranets Computer Communications. 1066-107525(11-12).
[24] Sood A (2007). Network Design By Using Opnet ${ }^{\text {TM }}$ It Guru Academic Edition Software. Rivier Acad. J., 3(1). 8.
[25] Tony K (2002). High Performance Data Network Design: Design Techniques and Tools (IDC Technology) Digital Press; 1st edition. 480.
[26] Leonard Kleinrock (2002). Creating a Mathematical Theory of Computer Networks.
[27] Eric D. Kolaczyk (2009). Tutorial: Statistical Analysis of Network Data. SAMSI Program on complex Networks. Opening workshop Department of Mathematics and Statistics. Boston University.

